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SUMMARY

In this study, high-order compact �nite di�erence calculations are reported for 2D unsteady incom-
pressible circular vortex �ow in primitive variable formulation. The fourth-order Runge–Kutta temporal
discretization is used together with fourth- or tenth-order compact spatial discretization. Dependent on
the perturbation initially imposed, the solutions display a tripole, triangular or square vortex. The com-
parison of the predictions with the detailed spectral calculations of Kloosterziel and Carnevale (J. Fluid
Mech. 1999; 388:217–257) shows that the vorticity �elds are very well captured. The spectral reso-
lution of the present method was quanti�ed from the decomposition of the vorticity distribution in its
azimuthal components and compared with reported spectral results. Using identical grid resolution to the
reference results yields negligible di�erences in the main features of the �ow. The perturbation ampli-
tude and its �rst harmonic are virtually identical to the reference results for both fourth- or tenth-order
spatial discretization, as theoretically expected but seldom a posteriori veri�ed. The di�erences between
the two spatial discretizations appear only for coarser grids, favouring the tenth-order discretization.
Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

High-order accuracy of the numerical simulation of unsteady incompressible �uid �ow is re-
quired for turbulent �ow research through direct numerical simulation (DNS) or large-eddy
simulation (LES), but also for complex engineering applications in order to decrease the num-
ber of nodes of the discrete domain. High-order compact �nite di�erences have spectral-like
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resolution in the sense of low dissipation and dispersion with narrow stencils, see Reference
[1], and are a logical choice if one is looking for high accuracy and �exibility at a relatively
low cost.
For incompressible �ows, the applications that use compact �nite di�erence schemes in

primitive variables either do not use compact schemes in the Poisson pressure equation
[2, 3], or use arti�cial compressibility [4] in order to avoid the solution of an elliptical
multi-dimensional equation with compact operators. Many applications using high-order �-
nite di�erence schemes for the spatial discretization use lower-order schemes for explicit time
advancement, e.g. Reference [5], resulting in methods that have high order only for the spatial
discretization and thus have very restrictive stability limits. Some DNS applications combine
spectral derivatives in two homogeneous coordinate directions with eighth order [6] or up
to tenth order, e.g. Reference [7], compact schemes for the remaining non-homogenous di-
rection. Using eighth=tenth-order compact schemes as those proposed by Lele [1] requires
solving penta-diagonal matrices, as opposed to fourth=sixth-order compact schemes that solve
tri-diagonal matrices, meaning that the increase formal accuracy carries a substantial compu-
tational cost. However, very few studies investigate the a posteriori error induced by spatial
and temporal discretizations of di�erent orders of accuracy.
The main objective of this work is to calculate a demanding circular vortex �ow using up

to tenth-order spatial discretization and a consistent Poisson discretization, and compare with
reported spectral solutions. This is done in the framework of 2D unsteady incompressible �ow
in primitive variable formulation, solved with a projection method and fourth-order Runge–
Kutta temporal discretization. This numerical framework was chosen since it resorts to well-
proven and increasingly popular numerical techniques in order to achieve high-order accuracy.
With such a solver in hand, and through comparison with spectral results, it is possible to
investigate the performance of fourth- and tenth-order accurate spatial discretizations in a
strongly non-linear �ow governed by the full 2D Navier–Stokes equations. The test problem
used for the comparison is a dynamically rich �ow, that through the development of its
wave-related instabilities provides a number of tests for the numerical method employed.
The instability of 2D isolated circular vortices presents itself as a good benchmark to test

numerical schemes. Monopolar vortices may emerge in two-dimensional turbulence from an
initial state of randomly distributed vorticity, see Reference [8]. When two of such vortices
with oppositely signed circulations meet, a dipole can form. A dipole is a self-propelling
compound vortex. In forced two-dimensional turbulence, Legras et al. [9] observed a more
complex coherent compound vortex, the tripole, which is characterized by an elliptic vor-
tex surrounded by two satellite vortices rotating in the opposite direction. The formation of
tripoles from unstable monopolar vortices was �rst predicted by Leith [10]. Later on, this
transition was veri�ed in experiments with rotating �uids [11, 12], as well as in numerical
work [13]. The cited laboratory experiments [11] and numerical simulations [13] showed that
tripole formation is the result of an azimuthal wavenumber-2 instability of an unstable isolated
circular vortex. A tripolar structure, consisting of an anti-cyclonic core and two cyclonic satel-
lites, with a period of rotation of 18 days and characteristic dimensions of about 50–70 km,
was visible in the sea of the Bay of Biscay during the period May 1991–February 1992,
Reference [14] in Reference [15]. Through further laboratory experiments, Kloosterziel and
van Heijst [16] showed that wavenumber-3 instabilities lead to a triangular vortex, surrounded
by three smaller vortices. The tripole and triangular vortex have simple symmetric vorticity
distributions. A wavenumber-4 instability leads to a square vortex, which is surrounded by
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four smaller vortices. The square vortex, unlike the tripole and the triangular vortex, is unsta-
ble and breaks up into two dipoles. The high-order compact �nite di�erence solutions of the
unsteady incompressible Navier–Stokes for the three di�erent perturbations will be compared
with the spectral results of Reference [15].
In the next section of this paper, we present the numerical model employed to solve the

two-dimensional unsteady incompressible Navier–Stokes equations. The spatial discretization
uses a staggered grid and the derivatives are evaluated using fourth- or tenth-order compact
�nite di�erence schemes. The time advancement is performed with a fourth-order time accurate
Runge–Kutta procedure. The compact �nite di�erence Poisson equation for the pressure cor-
rection is solved with an alternate direction implicit (ADI) procedure. This is one of the main
features of the method because the accuracy of the method is preserved for both velocities
and pressure. This is followed by the presentation of the results grouped into two subsections.
Firstly, the accuracy of the numerical method used is veri�ed with analytical Navier–Stokes
solutions. Secondly, the results for the calculations of three azimuthal perturbations to circular
vortices and its comparison with spectral results are presented and discussed.

2. NUMERICAL METHOD

2.1. Navier–Stokes equations

The unsteady incompressible form of the continuity and Navier–Stokes equations for a
Newtonian �uid were considered

∇ · u=0 (1)

@u
@t
+ (u · ∇)u= �∇2u − ∇p (2)

where u is the �uid velocity, p the pressure (divided by density) and � the kinematic viscosity
of the �uid.
The momentum equations are spatially discretized on a staggered mesh by �nite di�erences

and all derivatives are evaluated with implicit fourth- or tenth-order compact �nite di�erence
schemes [1]. For the sake of simplicity, let us consider a uniformly spaced mesh where the
nodes are indexed by i. The independent variable at the nodes is xi= h(i−1) for 16i6N and
the function values at the nodes fi=f(xi) are given. The �nite di�erence approximation f′

i
to the �rst derivative at the node i depends on the function values at nodes near i. These
schemes are generalizations of the Pad�e scheme. These generalizations are derived by writing
approximations of the form

�f′
i−2 + �f

′
i−1 + f

′
i + �f

′
i+1 + �f

′
i+2 = a

fi+1 − fi−1
2h

+ b
fi+2 − fi−2

4h
+ c

fi+3 − fi−3
6h

(3)

The relations between the coe�cients �, �, a, b and c are derived by matching the Taylor
series coe�cients of various orders.
For the fourth-order tri-diagonal scheme (Classical Pad�e scheme):

�= 1
4 ; �=0; a= 3

2 ; b=0; c=0
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For the tenth-order penta-diagonal scheme:

�= 1
10 ; �= 1

20 ; a= 17
12 ; b= 101

150 ; c= 1
100

The derivation of compact approximations for the second derivative is similar to the �rst
derivative. Again we start with a relation of the following form:

�f′′
i−2 + �f

′′
i−1 + f

′′
i + �f

′′
i+1 + �f

′′
i+2 = a

fi+1 − 2fi + fi−1
h2

+ b
fi+2 − 2fi + fi−2

4h2

+c
fi+3 − 2fi + fi−3

9h2
(4)

where f′′
i represents the �nite di�erence approximation to the second derivative at node i.

Once again, the relations between the coe�cients �, �, a, b and c are derived by matching
the Taylor series coe�cients of various orders.
For the fourth-order tri-diagonal scheme:

�= 1
10 ; �=0; a= 6

5 ; b=0; c=0

For the tenth-order penta-diagonal scheme:

�= 334
899 ; �= 43

1798 ; a= 1065
1798 ; b= 1038

899 ; c= 79
1798

Formulas for calculating the �rst derivative on a cell-centred mesh are necessary in staggered
grids. Starting from an approximation of the form

�f′
i−2 + �f

′
i−1 + f

′
i + �f

′
i+1 + �f

′
i+2 = a

fi+1=2 − fi−1=2
h

+ b
fi+3=2 − fi−3=2

3h

+c
fi+5=2 − fi−5=2

5h
(5)

The relations between the coe�cients �, �, a, b and c are derived yet again by matching
the Taylor series coe�cients of various orders.
For the fourth-order tri-diagonal scheme:

�= 1
22 ; �=0; a= 12

11 ; b=0; c=0

For the tenth-order penta-diagonal scheme:

�= 96850
288529 ; �= 9675

577058 ; a= 683425
865587 ; b= 505175

577058 ; c= 69049
1731174

The fourth-order accurate Runge–Kutta scheme was used for temporal discretization.
Periodic boundary conditions were applied to all discrete operators used. In order to achieve
fast convergence and low numerical noise, the periodic boundary conditions were implemented
implicitly when solving the compact �nite di�erences operators. This means that for every
derivative being calculated, the matrices are factored using LU decomposition, so that when
each derivative is calculated, only back substitutions are performed. This procedure allows for
equal levels of numerical noise between the fourth- and tenth-order solutions, thus allowing
a better comparison of the characteristics of both schemes.
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2.2. Pressure correction equation

The numerical method used belongs to the projection methods class, which are based on
the Helmholtz–Hodge decomposition theorem, see for example Reference [17]. This theorem
states that any vector �eld w can be decomposed as

w= u+∇q (6)

where u is divergence free and q is a scalar �eld de�ned implicitly as

∇ · w=∇2q (7)

We can de�ne an operator P that projects a vector �eld onto its divergence-free part:

u=Pw=w− ∇q (8)

The left-hand side of the Navier–Stokes equation for incompressible �ow written as

@u
@t
+∇p= − (u · ∇)u+ �∇2u (9)

is a Helmholtz–Hodge decomposition. Therefore an equivalent projection formula is given by

@u
@t
+∇p=P[−(u · ∇)u+ �∇2u] (10)

where P is the operator which projects a vector �eld onto the space of divergence-free vector
�elds with appropriate boundary conditions.
The classical four-stage fourth-order Runge–Kutta temporal discretization scheme is used

with periodic boundary conditions in every stage to advance the equations from time n to
n+ 1. Starting with un we compute

un+1 = un +
�t
6
(k1 + 2k2 + 2k3 + k4)−�tGpn+1

Mun+1 = 0
(11)

where

ki=(−C +D)(ui); i=1; : : : ; 4 (12)

and

u1 = un (13)

u2 = un +
�t
2
(−C +D)(u1)− �t

2
Gp2

Mu2 = 0
(14)

u3 = un +
�t
2
(−C +D)(u2)− �t

2
Gp3

Mu3 = 0
(15)
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u4 = un +�t(−C +D)(u3)−�tGp4
Mu4 = 0

(16)

where M is the discrete divergence operator, G the discrete gradient operator and C, D
represent convective and di�usive operators, respectively. In order to solve (ui ; pi) for stages
i=2; 3; 4; n+1, �rst an intermediate velocity u∗

i is obtained. Then this quantity is projected onto
the space of divergence-free �elds to yield ui. For each stage, and denoting by �i=pi −pi−1
the pressure correction, this procedure is given by

Step 1: Solve for the intermediate �eld u∗
i .

Step 2: Perform the projection.

ui = u∗
i +�tG� (17)

M (ui) = 0 (18)

M (G�i) =− 1
�t
M (u∗

i ) (19)

Step 3: Update the velocity and pressure.

2.3. 2D Poisson solver

The discretization of (19) using compact operators requires a formidable computing time to
solve the full matrix. Therefore, the Poisson equation was modi�ed in order to use an ADI
procedure. In order to solve Equation (19), a pseudo-temporal term @�=@� is added to this
equation and the resulting equation is solved by an ADI iterative procedure that uses compact
�nite di�erence schemes. The pseudo-temporal term vanishes in the convergence of the ADI
iterative procedure

@�
@�

∣∣∣∣
k+1=2

i; j
+ �k+1=2yy|i; j =�

k
yy|i; j−(∇ · u)mi; j along j; i=const (20)

@�
@�

∣∣∣∣
k+1

i; j
+ �k+1xx|i; j =�

k+1=2
yy|i; j −(∇ · u)mi; j along i; j=const (21)

where the superscript k refers to the ADI procedure iteration, m refers to the internal iteration
(m=1; M) within each time step and M the maximum iteration number determined by a
condition specifying that D(uM ) in absolute value is less than a prescribed limit �. Therefore,
the pressure correction �M is calculated such that

D(uM )=0 (22)

After convergence of the internal iterative procedure, �M → 0. That way the zero-divergence
of velocity is satis�ed with the accuracy of the compact �nite di�erence scheme used for
velocity and pressure.
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Figure 1. Convergence results for the Taylor vortex solved by fourth- and tenth-order schemes. Results
after �t=0:02564 s: (a) fourth-order; and (b) tenth-order.

3. CODE VERIFICATION

The developed algorithm was tested using the Taylor two-dimensional vortex-decay benchmark
problem to investigate its accuracy against a known analytical solution

U (x; y; t) =− cos(x) sin(y) exp−�t (23)

V (x; y; t) = sin(x) cos(y) exp−�t (24)

P(x; y; t) =− 1
4 (cos(2x) + cos(2y)) exp

−2�t (25)

The computational domain considered spans over 0¡x; y¡12� and �=2=Re, with Re=1
to have convective and di�usive terms with the same order of magnitude. Veri�cation of the
method is done via systematic grid convergence testing [18]. Because the exact solutions of
the benchmark problems are known, the order of convergence between any two grids, p, can
be extracted. Due to the high accuracy of the schemes employed, the solutions were obtained
in the domain 0¡x; y¡12�, so that the �ner grid error was well above the machine-zero.
In order to quantify the error of each solution, the L2 and L∞ error norms are calculated.

The convergence of the error norms for the velocity U and pressure p are shown in Figure 1
for the fourth- and tenth-order schemes, respectively. The time chosen corresponds to the
time the vortices decay 5% of their original strength. The error norms converge at fourth-
and tenth-order rates, verifying the formal accuracy of the schemes employed.

4. INSTABILITY OF TWO-DIMENSIONAL ISOLATED CIRCULAR VORTICES

Kloosterziel and Carnevale [15] have investigated numerically the stability of circular vortices
with a radial vorticity given by

!�(r)= (12�r
� − 1) exp(−r�) (26)
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The vorticity is negative near the centre and positive further out. The corresponding velocity
pro�les v�(r)= − r exp(−r�)=2 increase from zero at r=0 to a maximum at r=(1=�)(1=�),
falling monotonically to zero. The �ow is everywhere clockwise.
For small-enough positive � these vortices are linearly stable. For approximately �¿1:85

they become unstable to perturbations with k=2. For approximately �¿3 they �rst become
unstable to k=3 and for �¿4 they become unstable to wavenumber-4 instabilities. The growth
rates of the most unstable normal modes as a function of for wavenumber k=2; 3 and 4 were
calculated by Kloosterziel and Carnevale [15] and is shown that for large-enough � several
azimuthal wavenumbers can simultaneously be unstable.
For a small initial perturbation, unstable modes grow initially in such way as dictated by

linear dynamics. However, in order to investigate the non-linear e�ects for larger amplitudes,
the incompressible Navier–Stokes equations need to be solved numerically. In order to onset
instabilities, the following initial vorticity perturbation was used:

!′=	 cos(k
) exp
[−(�r� − 2)

2�2

]
(27)

where 	 and � are constants and k is an azimuthal wavenumber.
In order to compare our results with other numerical simulations, for each numerical

simulation the decomposition in azimuthal components was calculated.
Vorticity �elds can be expressed as

∑∞
k=0 wk , where

!k =fk(r; t)Re(eik
+i�k (r;t)) (28)

Re(·) denotes real part and �k =0 for k=0. The fk(r; t) and the phase factors can numerically
be determined using Ck =fk cos(�k), Sk =fk sin(�k) with

{Ck(r; t); Sk(r; t)}= 1�
∫ 2�

0
!(r; 
; t){cos(k
); sin(k
)} d
 (29)

This gives a decomposition of the vorticity distribution in azimuthal components. A measure
of the amplitude of the azimuthal vorticity for each wavenumber, at a given time, is simply

Ak(t)=Q
1=2
k =

(∫ 2�

0

∫ ∞

0
!2k(r; 
; t)r dr d


)1=2
(30)

where Qk is the enstrophy associated with wavenumber k. The origin r=0 is at the centre
of the vortex.
The Navier–Stokes calculations that follow are divided into three sub-sections and are the

results for the k=2; 3 and 4 perturbations. For all calculations the computational domain
extends to 10 non-dimensional units for each coordinate direction. This was discretized by
a mesh comprising 256× 256 nodes. Time was scaled by |!(0)|−1 and the time-step used
was 5× 10−2, corresponding to a CFL number of 1.28. The kinematic viscosity was set to
�=1× 10−5 m2 s−1.
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Figure 2. Shaded contour plots of vorticity for a !�=3 vortex initially perturbated
with a perturbation of type (27) with k =2, 	=0:1, �=0:25. Fourth-order results:

(a) t=0; (b) t=40; (c) t=80; and (d) t=200.

4.1. k=2 instability

Figure 2 shows the predicted evolution of the �=3 vortex �ow with a k=2 perturbation
given by Equation (27). For this vortex the only unstable normal mode is k=2. When this
vortex is randomly perturbed, a wavenumber-2 instability emerges. The results correspond to
the fourth-order compact scheme.
Figure 2(b) displays the elongated shape of the negative core vorticity, indicating that

at t=40, A2 has attained a considerable amplitude. For t=80, two satellites, semi-circular
areas of positive vorticity, have formed while vorticity �laments start to develop and the core
reaches its maximum ellipticity. At t=120 (not shown) the core almost returns to a circular
shape. From then on the core goes through periodic cycles of elongation. The formed tripole
persists afterwards.
Figure 3 shows the evolution of Ak(t) for various even wavenumbers for the simulation

shown in Figure 2. Results are shown for both fourth- and tenth-order calculations. Amplitudes
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Figure 3. Evolution of amplitudes of various azimuthal components wk . k =2, 	=0:1,
�=0:25: (a) fourth-order results; and (b) tenth-order results.

for k¿8 are at all times smaller than A8. The evolutions of the amplitudes Ak for the fourth-
and tenth-order schemes are almost identical, being characterized by an initial transient region,
followed by a period of exponential growth of A2, as predicted by linearized dynamics. Due
to non-linear e�ects, the higher harmonics also grow. For t approximately equal to 80, the
amplitudes display a peak. Afterwards, small oscillations appear in all Ak . These oscillations
can be traced to the referred cycles of elongation and the return to circularity of the core,
which are progressively damped. This rotation is stable and the �ow is almost stationary in
a co-rotating frame.
In Figure 3 is also shown the evolution for the modal base �ow and perturbation

wavenumber, A0 and A2, respectively, for the spectral results of Reference [15]. Compar-
ing the present results with the spectral results shows that the A2 peak occurs later for the
present results, this di�erence being attributed to the initial state for t¡20. The evolution
for A2 is similar for both sets of results. The values for A2 for t=300 are practically the
same, indicating that for su�cient large times the amplitude will be the same. This means
that the main feature of the �ow, de�ned by the amplitude of the perturbation enstrophy, is
well captured.

4.2. k=3 instability

Figure 4 shows the evolution of a �=7 vortex seeded with a k=3 perturbation given by
Equation (27). This vortex can be unstable to various azimuthal wavenumbers. The initial
condition is shown in Figure 4(a). In Figure 4(b) a wavenumber-3 instability is visible, while
in Figure 4(c) the core has become triangular and three satellites have formed around the core.
In Figure 4(d) the �nal state is shown. Figure 5 shows the evolution of Ak(t) with k=2; 3; 6
and 9 for the simulation shown in Figure 4. Results are shown for both fourth- and tenth-order
results. The peaks of A3 correspond to a markedly triangular shape of the vortex core. The
evolution is similar to that shown in Figure 3 except that A2 continues to grow even after
the triangular vortex has formed, because the �=7 vortex calculated is also unstable to k=2
perturbations. The di�erences between both set of results are minimal, making them virtually
identical. The results from Reference [15] for A0 and A3 are also shown. The agreement of the
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Figure 4. Shaded contour plots of vorticity for a !�=7 vortex initially perturbated
with a perturbation of type (27) with k =3, 	=0:1, �=0:5. Fourth-order results:

(a) t=0; (b) t=20; (c) t=40; and (d) t=200.
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Figure 5. Evolution of amplitudes of various azimuthal components wk . k =3, 	=0:1,
�=0:5: (a) fourth-order results; and (b) tenth-order results.
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present results with the spectral results is good, with the present method capable of closely
predicting the time for the occurrence of the peak of A3.

4.3. k=4 instability

In Figure 6, we can see the evolution of a �=7 vortex seeded with a k=4 perturbation of
type (27). The initial condition is visually similar to Figure 4(a). In Figure 6(a) the core
has become roughly square in shape and four satellites have formed. This square vortex ro-
tates but is unstable to various wavenumber modes. The onset of instability can be seen
in Figure 6(b). The satellites move towards each other in pairs and merge. Afterwards the
core becomes elongated and breaks up into two vorticity patches. Two dipoles form, which
propagate in opposite directions. In Figure 7, the evolution of Ak(t) with k=0; 2; 4; 8 and 12
for the simulation shown in Figure 6 can be seen. Results are shown for both fourth- and
tenth-order results. After the square vortex formed, A2 continues to grow and for t¿100
equals A4 in amplitude. At this time the core is no longer square and while the k=2

Figure 6. Shaded contour plots of vorticity for a !�=7 vortex initially perturbated
with a perturbation of type (27) with k =4, 	=0:05, �=0:5. Fourth-order results:

(a) t=40; (b) t=185; (c) t=200; and (d) t=210.
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Figure 7. Evolution of amplitudes of various azimuthal components wk . k =4,
	=0:05, �=0:5: (a) fourth-order results; and (b) tenth-order results.

component continues to grow, other amplitudes, namely A4 and A0 start to dip. These changes
are associated with the continued stretching of the core, the merging of the satellites and �nally
the dipole splitting. In Figure 7, is also shown the evolution for the modal base �ow A0 and
perturbation wavenumber A4, as well as A2, for the spectral results of Reference [15]. The
agreement of the present results with the spectral results is good, with both sets of results
capable of predicting the evolutions. The main di�erence between the fourth- and tenth-order
results is on the prediction of the onset of the instability, that is �rst predicted by the tenth-
order scheme. It should be noted that the onset of instability is predicted later for the present
results than for the reference results, the tenth-order results being closer. As for the spectral
results, the present results show that the break-up of the square vortex is caused by a k=2
instability. The growth of A2 is caused by numerical noise, which indicates that the level of
numerical noise is probably higher for the tenth-order scheme.

4.4. Discussion

The formation of a tripole is the most robust phenomenon since it can also arise from ran-
domly perturbed �ows. Triangular and square vortices can only be formed when azimuthal
perturbations are seeded in the �ow. However, all three vortices result of similar evolutions.
The perturbation mode growth is followed by the generation of higher harmonics due to non-
linear e�ects. The formation is complete when these non-linear e�ects halt the growth and
amplitudes level o�. Amplitudes Ak have the same ordering A0¿Am¿A2m¿ · · ·, where m is
the perturbation wavenumber initially seeded in the �ow. The main features of the vortices
are captured by the approximation !≈!0+!m. The �rst harmonic !2m is of fundamental im-
portance in the formation process, although A2m levels o� faster than Am. Prior to equilibrium,
higher harmonics !3m;!4m; : : : play a minor role in the formation of the whole structure but
are needed to capture the existing small scale �laments. The resolution used, 2562, resolves
these small scale �laments well, even though calculations with 1282 and 642 (not shown)
reproduce essentially the same structures, rotating at approximately the same rate.
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Figure 8. Comparison of amplitudes of the perturbation mode and its �rst harmonic for two di�erent
grid resolutions: (a) k =2; (b) k =3; and (c) k =4.

From the analysis of the evolution of the amplitudes of the azimuthal components !k
for the three vortices, it is shown that there is no di�erence in the main features of the
�ow by using a fourth- or tenth-order spatial discretization for the �ner resolution used. The
evolution of the amplitudes of !0 and !m are basically the same for the results with the two
compact �nite di�erence operators. Furthermore, the amplitudes of !2m are very close. The
di�erences are more noticeable for the higher harmonics, namely !3m and higher, especially
as the perturbation mode grows initially.
The di�erences between the two spatial discretizations used arise when we compare the

evolutions of the azimuthal amplitudes Ak for half the reference resolution (Figure 8). During
the vortex formation phase, the tenth-order results for !m and !2m are signi�cantly closer
to the results for the �ner grid than the fourth-order results. This behaviour shows that the
highest order spatial discretization is capable of better resolving the main features of the
�ow for coarser grids, showing a behaviour often mentioned about high-order compact �nite
di�erences even though seldom shown: the possibility of obtaining better accuracy for coarser
grids.

5. CONCLUSION

Unsteady 2D Navier–Stokes calculations were performed with high-order compact �nite dif-
ference schemes in which all spatial derivatives were discretized with fourth- or tenth-order
accurate compact schemes and fourth-order Runge–Kutta for explicit temporal discretization.
The pressure Poisson equation was solved with a false transient ADI method using also com-
pact spatial operators, of the same order of those used in the momentum equations.
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The results for the calculations of three azimuthal perturbations to circular vortices are pre-
sented. The three di�erent vortex con�gurations that are obtained result of similar evolutions.
The growth of the perturbation mode is accompanied by the generation of higher harmonics
due to non-linear e�ects. The formation is complete when the non-linear e�ects stop the per-
turbation mode growth and all amplitudes level o�. Comparison of the circular vortex under
di�erent modes of perturbation showed that the present method is capable of reproducing the
main features of the spectral �ow solutions. The calculations display an evolution of the modal
enstrophy for the base �ow and for the perturbation wavenumber that are in good agreement
with the spectral solution for the same resolution.
From the analysis of the evolution of the amplitudes of the azimuthal components !k for

the three vortices, it is shown that there are negligible di�erences in the main features of
the �ow, as de�ned by the perturbation amplitude and its �rst harmonic, for both fourth-
or tenth-order spatial discretization, when using the reference grid resolution. The di�erences
between the two spatial discretizations used are apparent when we compare the evolutions
of the azimuthal amplitudes Ak for half the reference resolution, favouring the tenth-order
discretization.
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